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Introduction

The purpose of this report is to suggest some techniques which are

useful in adjusting for heteroscedastic disturbances common to growth
data. While all the results pertain specifically to dried wheat head
weights, it is hoped that the concepts involved are general enough

to be of use with other types of growth data or in non-growth situations.

Two basic approaches will be discussed; log transformations and weight-

ed least squares. Several different log transformations will be

developed most of which are of the form 1n (Ay + B) where y is the
dependent variable and A and B are derived constants based on various
criteria. The last transformation discussed has four constants to be
specified and the log is taken twice. The second approach is to weight the
diagonal elements of the variance-covariance matrix of the dependent vari-
able by some appropriate function which creates a homoscedastic disturbance
term. A linear function is used which relates the expected value of the
dependent variable to the population standard deviation.

The data used in this report was collected during April to July 1977
in 68 winter wheat fields distributed throughout Kansas. These fields
were a subset of the wheat objective yield sample in which fields were
selected with probability proportional to acreage. This was done so
that field level yield observations could be weighted together equally
to form a state average. Within each field there were two randomly
and independently located plots. Each plot consisted of one row and
was approximately five feet in length. In the case of braodcast wheat,
the plots were six inches wide. Stalk counts were made in the five
foot plot. Every tenth plant was tagged until a total of 30 was
reached. The 30 tagged plants could 1ie within the five foot section
or go beyond it depending on the plant density. Stalk counts averaged
less than 300 plants and generally the sample extended past the five
foot area.

Weekly visits were made by trained enumerators to observe when the
tagged plants had heads fully emerged and when flowering occurred.

As a general rule, once 80% of the tagged plants in a particular field
had flowered, clipping began. A random sample of four heads per plot
per weekly visit was clipped, each head was placed in an air tight
plastic tube and mailed to the statz lab. In the lab, wet and dry
weights were determined for each head. The heads were dried for 46
hours at 150 degrees Fahrenheit. Head emergence and flowering
continued to be observed until two weeks after clipping began or until
all tagged plants had flowered. Heads continued to be clipped on a
weekly basis until harvest.




Time since full head emergence and time since flowering were calculated

for each clipped head. Since the random sample of heads to be clipped

each week was pre-determined, some heads were clipped before head emer-
gence and flowering was observed. It was determined in previous work *
that time since flowering is the preferred variable. This has been veri-
fied and the time variable used in this report is time since flowering.
Heads for which flowering was not observed were excluded from the data set.

The sample design that has been outlined is a two level nested design.
Plots are nested within fields and heads are nested within plots.
Consequently, individual head weights are not strictly independent and
aggregation,should take place until independent points are obtained.
In the past , this has meant averaging head weights for all plants

in a field on a particular weekly visit. Since the success of the
growth model depends upon the relationship between time since flower-
ing and head weight, there is concern that this method of aggregation
might adversely affect the time-growth relationship. The reason for
this is that even though a set of heads might have the same clipping
date, they do not necessarily have the same number of days since
flowering. Aggregation averages over both time and weight. If time
since flowering is fairly consistent for a particular visit, there

is no problem. However, in the data to be used in this report there
was as much as a two week difference in time values for a particular
visit. Therefore a method of aggregating observations with similar
time values was sought. Since weekly visits were made, the flowering
date is actually an average between the date of the visit when flower-
ing was first observed and the date of the previous visit. This puts
a measurement error of approximately 3.5 days on either side of the
flowering date. (Visits have been made every two or three days in
earlier research but analysis indicated that weekly visits would be
sufficiently accurate. *) With this in mind, the data was divided
into time intervals in each of which the time values were assumed to
be essentially the same. Head weights in each time interval were
averaged together within a field without regard to plots. So long as
the two plots within a field have the same number of observations,
each plot will receive equal weight as the sampling plan intended.
However, plots with very few observations would tend to receive less
weight. Averaging within time intervals should more fully preserve
the time-growth relationship than would aggregation by visit.

*Nealon, Jack 1976 The Development of Within-Year Forecasting Models
for Winter Wheat. Research and Development Branch, Statistical
Research Division, ESCS, USDA.



Since the sampling plan was not conceived with time interval aggre-
gation in mind, one consequence is an increased variability in the
number of observations per mean. Means are comprised of from one

to thirteen observations. To reduce the effect of means with few
observations, each mean was expanded by the number of observations
going into it. In other words, a mean comprised of one observation
would be included once while a mean comprised of eight observations
would be included eight times. This gives the allusion of more

data points than really exist causing a reduction in the parameter
standard error estimates. The reduction is relative, however, and
does not affect comparisons as long as the expanded data set is

used consistently. Another consequence of expanding the data set

is that fields are weighted unequally because of varying numbers

of observations in each field. This violates the intention of the
sampling plan but the purpose of this report is solely to investi-
gate methods of adjusting for heteroscedasticity and not to estimate
a state yield. It is suggested that the expanded data set is suitable
for this purpose.

It should be pointed out that even when we do not expand the aggre-
gated means, there is still a problem with the way in which the
fields were sampled. This is because the number of visits to clip
heads varied from three to seven depending upon when harvest occurred.
Therefore, if no expansion is done, fields that had more visits would
be more heavily favored. A possible solution to this would be to
weight each aggregated mean by the inverse of the number of time
intervals in the corresponding field. In this way, fields with three
visits would receive the same weight as fields with seven. Ideally,
we'd Tike to develop a sampling plan that would clip heads a certain
number of days after flowering rather than clipping a random sample
comprised of various stages of development on a fixed date. To
control the number of heads being clipped in such a plan would not

be easy and this problem remains for future study.
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The basic growth model which will be referred to throughout this report
is as follows:*

(1) y. = —=2 — + ¢ where i =1,2, ...,n
i 1+ 8o ti i

Least squares theory will be used to estimate parameters a, B and p. This

requires the following assumptions about the nature of the model.
(a) E (Ei) =0 for all i
)

2
(b) Vvar (e.) = E (e. o for all i
(c) Cov (ei,ej) =E (g.e.) =0 for all i # j

i i
LY

Stated another way, assumptions (b) and (c) imply that the variance-co-
variance matrix of the dependent variable y is

nxn

Heteroscedasticity is defined to occur when the diagonal elements of the
V-C matrix are no longer equal. In matrix notation, the V-C matrix can
be expressed as

) O
K2

*A good discussion on this model appears in an earlier report. House,
Carol C. 1977 A Within-Year Growth Model Approach to Forecasting Corn
Yields. Research and Development Branch, Statistical Research Division,
ESCS, USDA. pp 2-3.



In the original notation, assuhption (b) above would be replaced by

(4) E(eiz) = K].o2 for all i

In words, heteroscedasticity means that the variance of the dependent
variable does not remain constant over the range of the independent
variable. In the case of the growth model, the variance of the y's
increases with time.*

The effect that heteroscedasticity has when standard least squares is
applied is often difficult to assess. In generalized linear regression,
parameter estimates tend to become unreliable depending upon the degree
of the heteroscedasticity. While they remain unbiased, their standard
errors are underestimated. Also, the estimate of o2 will no longer be
unbiased.** Several different methods of adjusting for heteroscedasticity
will now be discussed.

The Log Transformation

The basic growth model was fit to the data using the NLIN procedure in
SAS.*** A plot of the estimated values of y overlayed on the data is shown
in Figure 1. A plot of the residuals vs. time is shown in Figure 2. The
presence of heteroscedasticity can be seen in the latter figure. The
cone-shaped plot shows that the deviation of the data from the fitted
equation increases with time. A residual plot showing homoscedasticity
(and no other model deficiencies) would appear to show a random pattern.
The correlation between the absolute value of the residuals and time is

.28 using Pearson's R (denoted by Rp) and .31 using Spearman's Rho (a

comparable nonparametric test denoted by RS). Both are significantly
different from zero. See Table 1 on page 9.

To adjust for the non-homogeneity of variance, we would like to decrease

the variance as t becomes large so that the absolute value of the residuals
will become uncorrelated with time. It is possible to do this with a log
transformation. The natural logarithm will be used in this discussion but
the logarithm to the base 10 could also be used. To visualize how this
works refer to Diagram 1 on the next page. Taking the 1n (y) has the effect

*If data is collected well after maturity is reached, the variance will
become stable for large values of time. While this did not appear to
happen with the wheat data used in this report, it was noted in some
earlier corn research (House).

**Goldberger, Arthur S. 1964 Econometric Theory. John Wiley & Sons, Inc.
New York, London, Sidney. pp 238-241.

***Barr, Anthony J., Goodnight, James H., et. al. A User's Guide To SAS
76. SAS Institute Inc. Raleigh, N. C. pp 193-199.
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of spreading values of y less than 1 farther apart and collapsing values
of y greater than 1. In growth data, since smaller values of y are less
variable than larger values, the 1n (y) will have more consistent vari-
ability over the range of t.

Since y represents weight, it would be good to keep the transformed
variable positive also. Values of y are known to be in the range .1 to
2.0 so simply using Tn (10y) would produce strictly positive values.
Notice that 1n (10y) = In (y) + In (10) = In (y) + 2.303 so that multi-
plying y by a constant doesn't change the spreading and collapsing effect
but only moves the transformed variable up or down the scale. Refer to
Diagram 1.

The discussion so far suggests that we multiply both sides of (1) by 10
and then take the log of both sides. This gives the following model:

(5) In (10y) = 1n Jﬂa—tnoe
1+Bp

To get least squares parameter estimates, the model must be expressed with
an additive error term. We therefore redefine the model with additive
error ¢' which is different from the ¢ in (5).

(6) n (10y) = In ‘—%—t ‘e
1+8p

If we are willing to make this change in models, there will be no violation
of assumptions in applying least squares theory to estimate the parameters
in (6). We are primarily interested in forecasting the average value of

y at the end of the growing season so « (the asymptote) is the parameter
which we are most interested in estimating. Notice that the least squares
estimate of a (and, for that matter g8 and p) obtained from (6) will be in
terms of the untransformed dependent variable and therefore no antilog

will be required. This would not be the case if, for example, we had only
taken the 1og of the left-hand-side of (1). A plot of the estimated values
of the transformed dependent variable overlayed on the transformed data is
shown in Figure 3. A plot of the residuals versus time is shown in Figure
4. The residual plot shows that the heteroscedasticity has reversed it-
self, that is, we have over adjusted. Table 1 shows the correlation
coefficients which support this conclusion. Rp is significantly different

from zero at - .0645 while RS is not significantly different from zero
but is also in the negative direction. The mean square errors (MSE's) of




the unadjusted and log models are not directly comparable because the data
sets are different. This is particularly true with the log transformation
presently being considered because, as Diagram 1 shows, the transformed
dependent variable increases for all but the very smallest values of y.

A uniform increase in y (such as adding a constant) would not change the
MSE but here the expansion of y values less than 1 is more than the con-
traction of y values greater than 1 causing the log model to have a larger
MSE.

Table 1 also shows the parameter estimates with the corresponding relative
standard error in terms of a percent. Although the current log model over
adjusted, there was a lessening of the affect of non-homogeneous variance
as evidenced by the decrease in the significance of the correlations. It

can be observed that the relative standard error of o increased. This
seems to be consistent with the generalized linear regression situation
stated earlier in which the standard error of a parameter estimate tends

to be understated when influenced by heteroscedasticity. Obviously, linear
theory may or may not hold in a non-linear setting so we only seek to point

out the comparison. The errors for 8 and p decrease apparently bringing
the consistency to an end. These same directional changes in the relative
standard errors occur in all the adjusted models. The fact that the trans-
formation In (10y) over adjusted leads us to want to find a transformation
which does not cause the small values of y to become more variable than the
large values. As noted earlier, multiplying y by a constant prior to tak-
ing the log does not change the relative relationship between the points.
Therefore, we now want to consider transformations of the form 1n (Ay+B)
where A and B are constants to be specified. This will cause changes in
the relative relationship between the points when B#0.

Several approaches can be used to adjust for heteroscedasticity. Small
values of y could be spread out until they have variability comparable to
large values of y. Or, conversely, the variability of the small values
could be held relatively stable and the large values collapsed until a
comparable variance was attained. Thirdly, as in the case of (5), there
could be both an expanding and contracting of the y values. OQbviously,
it would not be desirable to increase the total variation so, a trans-
formation maintaining the same approximate range as the untransformed
data would help to keep the total variation from increasing. Therefore,
A and B will be determined with this in mind.

The y values are known to lie within the interval of 0 to 2 grams. The
following two constraints will keep the transformation of 0 equal to O
and the transformation of 2 equal to 2.

1]

0
2

In (0A1 + Bl)
In (2A1 + Bl)



TABLE 1

MODELS
Unadj n (10)’) In (A1y+Bl) n (A2y+82) In (A31n (A2y+82) + B3)
Regression
MSE .0337 .0726 .0309 .0188 0114
R2 .942 .980 .978 .97 .984
Param Est's
o 1.0360 1.0307 1.0292 1.0293 1.0280
&&/; 1.5 2.0 1.8 1.7 1.9
8 4.2556 4.2159 4.1674 4.1714 4.1501
5é/é 5.3 2.8 3.5 3.8 3.1
o .8886 .8947 .8929 .8919 .8946
85/5 5 4 4 5 .4
Correlation
R, . 2780 -.0645 .0770 1297 -.0162
Prob >|R | .0001 .0041 .0006 .0001 4712
R .3093 -.0172 1119 1626 .0240

S
Prob >|R, | .0001 4452 .0001 .0001 .2850




Exponentiating both sides of each equation gives:
e®= (0A, + B;)
e?= (2A, + B,)

Solving the first equation for B, gives B;=1.
Substituting into the second equation and solving for A, gives:

el= (2A1 + ])
A1= e2-1
A,= 3.194528

The transformation is then 1n (3.194528 y + 1). The model now becomes

'

(7) In (A,y+B;) =1n Me v, | +e;
1+8p

where A| = 3.194528
Bl=]

The plot of the estimated values of the transformed dependent variable
overlayed on the transformed data is shown in Figure 5. The corresponding
residual plot is shown in Figure 6. The residuals show a slight positive
correlation with time and Table 1 indicates that the correlation is signifi-
cantly different from zero and positive. Both Rp and RS are, however, sub-

stantially smaller than in the untransformed data.

The MSE in (7) is in the same neighborhood as the MSE in the unadjusted
model which says that the total variation has not been increased. It does
not necessarily indicate that the model is superior since the two models

aren't directly comparable. The R2 value from (7) indicates that more of
the variability in the transformed data is being accounted for than in the

untrans formed data. A1l the R? values indicate that good relationships exist,
however.

10



While (6) over adjusts, (7) does not adjust enough to cause the variances
of y to become constant over the range of time. This suggests that an-
other transformation be developed. The primary function of the growth
model is to forecast what the value of o will be at the end of the season
based on data collected early in the growing season. With this application
in mind, it would be best not to increase the variance for small values of
y which, in the early part of the growing season, are the main input into
the model. Also, since o is the primary parameter to be estimated, a
transformation which causes less distortion around the true asymptote would
be preferable.

Figure 1 shows that the smallest group of y values (i.e. 0<t<5) is approx-
imately bounded by .1 and .8. So, we want a transformation that preserves
this same interval thus keeping the variation relatively the same. Based
on previous models, the true value of o is thought to be approximately
equal to 1. This gives rise to the following two constraints.

n (.8A2+82) - ]n (.]Az"’Bz) = .7
n (A2+82) =1

The first constraint can be expressed as

.8A,+B,
In m = 7
.8A,+B, 7
A8, -
7
.8A2+Bz = e. (.]A2+Bz)

7 7
A, (.8 - .1e" ) =8B, (e’ - 1)

.598625A, = 1.0137538,

i

A, = 1.6934698,

The second constraint can be expressed as

e=A2+82

N




After substituting and solving, the two constraints give the following
values for A, and B,.

A, = 1.709070
B, = 1.009212
The model now becomes
A20L
1+8p
where A, = 1.709070
B, = 1.009212

The estimated values of the transformed dependent variable overlayed on the
trans formed data and the residuals are shown in Figures 7 and 8, respectively.
The residuals again show a positive correlation with time. The Rp and RS

values in Table 1 are both significantly different from zero. A comparison
of Figures 1 and 7 reveals that the range of the group of smallest y values
(i.e. 0<t<5) is the same and the asymptote is in the neighborhood of 1.0 for
both. While the transformation did keep the variance for small values of y
stable, it did not reduce the variation as y increased enough to create a
homogeneous situation.

If the present criteria used to select A and B are deemed satisfactory, then
any further attempt to adjust for heteroscedasticity by obtaining other A
and B values would Tead to a compromise in the selection criteria. There
are no doubt many legitimate ways to select A and B but a feasible alterna-
tive to a compromise would be a double 1og transformation. This can be done
by applying the same criteria to the transformed data in (8) as were applied
to the original data. The two previous constraints will be the same except
the transformed points will be substituted.

y A .8 1.0
In (A,y +B,) .165615  .865615 1.0

12



The constraints now become _
In (.865615A; + B3) - In (.165615A5 + B3) = .7
In (A3+B3) =]

Proceeding as before, the solution is

Ay = 1.782610

.935672

Bs
*
The model now becomes

(9) In (A31n (A,y + B,) + B3) = 1n (Azln fo Tt By |t Bi) + g5
14+8p
where A, = 1.0709070
Ay = 1.782610
B, = 1.009212
By = .935672

Figures 9 and 10 show the two plots associated with this model. The residual
plot appears to indicate a very slight negative correlation. In Table 1, R

is negative and RS is positive but neither is significantly different from

zero. The estimate of the population variance (MSE) is only one-third that
of the unadjusted model. This is reasonable since by holding the variance
stable for the smallest values of y, the transformation lessens the variance
for all larger values of y.

*It has been pointed out that (9) has a good deal more potential than is
being utilized here. We essentially applied the same pair of constraints
twice to obtain values for A,, B,, A; and B;. Conceivably, since there
are four unknowns, four different constraints could be used. The problem,
of course, would be to find four constraints that are solvable.

13




The relative standard errors in (9) increased for o and decreased for g
and p which, as discussed earlier, is consistent in all the adjusted models.

Compared to the unadjusted model, « from (9) is only .8% less. While het-
eroscedasticity tends to cause unreliable parameter estimates, depending on
the degree, the model in (9) seems to show that the unadjusted estimate of
a is quite stable.

Weighted Least Squares

An alternative to the log transfermation which sometimes may be effective
in adjusting for heteroscedasticity is to perform a weighted least squares
regression. Recall the assumption concerning the diagonal elements of the
variance-covariance matrix when heteroscedasticity is present.

2
E (61.2) = kyjo for all i

If we divide (1) by /Ei, we obtain

Y
1 = S — +

E .
i
k. /E; (1+Boti) /E;

1

(10)

. Q
where i = 1,2, ...,n

The disturbance term is now homoscedastic.

E ((ey/ ) ) = E (e

2 = o2

i )/ki ¢

Equivalent sums of squares and parameter estimates are obtained if the di-
agonal elements of the V-C matrix of the dependent variable are multiplied by
1/ki' This fact provides two alternative ways of performing a weighted

regression. The NLIN procedure in SAS can be applied to (10) or the weight
statement can be used with the NLIN applied to (1). If the weight statement
is used, the value of the weight would be 1/ki. Although these two alter-

natives give identical sums of squares and parameter estimates, there is a
useful difference between the two. The first alternative provides a residual
plot in terms of y// k while the other is in terms of the original y values.
Therefore, since we need to see the residual plot and correlations to check
for heteroscedasticity, the first alternative will be employed. The second
alternative could be used if the variance-covariance matrix was obtained and
then a test for differences among diagonal elements would test the hypothesis

14



of homogenious variance. At present, the option of outputting the V-C
matrix in NLIN is not available.

In theory, a weighted regression will provide homoscedastic disturbance

so the problem becomes one of finding a suitable function for k. A re-
lationship needs to be found which describes the behavior of oy which is
the true standard deviation of y at a point in time. Because of the way
in which the data was collected, each data point has a possible error of
+ 3.5 days on the value of time. Therefore, it would exceed the precision
of the data to break it down into one or two day intervals. Since most
observations were centered around a particular day of the week, the data
in Figure 1 already appears grouped. The data readily divides into the
seven time intervals listed in Table 2. It is then reasonable to estimate
oy in each interval by calculating the standard deviation of the y values

in each group. Denote this estimate by ;t'

TABLE 2

Time Interval 5 No. of

(days) (grgms) __obs.
0<t<5 .1115 210
5<t<14 .1487 389
14<t<20 .1852 416
20<t<28 .1847 422
28<t<33 .2210 324
33<t<41 .2197 180
41<t .2593 42

15




In some applications, the disturbance variance, o2, is propertional to

t
the square of the expected value of y or some linear function of it.*
This would make E(y)2 a candidate for k. Since E(y) is, of course, un-

known, the y values obtained from a non-linear regression are the "best"
estimates. Because of the reasons already stated, we want to apply the
NLIN procedure to (10) and therefore a relationship for ¥ k 1is sought.

Figure 1 shows that as y increases so does o A Tinear regression of

t
g, ony weighted by the number of observations in each value of 0, Was

run to see if a reasonably good relationship exists. A y value was
calculated for the median of each time interval using the parameter
estimates from the unadjusted model. The regression was highly signifi-
cant with R2 = .908. Figure 11 shows the estimated values of the dependent
variable and the seven data points. The estimated equation ** is

N

(11) o, = 078111 + .14539] y

Since E(c?) = o%, the disturbance variance, it can be seen from (4) that
vV ko= Gt/o. The MSE from the unadjusted non-linear regression although

biased, is an estimate of o2. Therefore, dividing (11) by .183683 (see
Table 1) gives a relationship for vV k . ***

~ ~

(12) 0,/c = .425251 + .791535y

*Goldberger, p 245.

**[t has been suggested by House, pp 12-13 that a step function be used to

estimate Oy The steps would then be the oy values in Table 2. The time

intervals in the wheat data are fairly wide for reasons already mentioned
and there is some concern that a step function of this nature would not

adequately describe the unknown continuous function of Oy -
***Dividing by o has no affect on the parameter or standard error estimates

so the choice of o only affects the MSE in the adjusted non-linear regression.
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There are some obvious deficiencies in using (12) as an estimate of / k .
Since y is estimated from a heteroscedastic model, while unbiased, it is

~

influenced by the reliability of the parameter estimates. o is no longer
unbiased. So, we have a situation in which the more the heteroscedasticity,
the less our ability to estimate ct/o. This might suggest an iterative

procedure where y and o are revised based on the previous weighted re-
gression.

To evaluate how effectively (12) adjusts for heteroscedasticity, NLIN was

run on (10) using (12) as an estimate of Vv k . Figure 12 shows the estimated
values of the transformed dependent variable overlayed on the transformed
data. Figure 13 shows the corresponding residual plot. The residuals still
indicate a positive correlation with time although not nearly as severe as

in Figure 2. Table 3 gives the correlations which have been reduced but are
still highly significant. It is interesting to note that the MSE is identi-
cal to that obtained in the unadjusted model to four decimal places. This
result is mostly coincidence since, in theory, dividing by v k should leave

the true population variance o2. However, o2 from the unadjusted model is
biased and therefore the estimate of the population variance in the present
model should be somewhat less. Apparently, the error in using (12) as an

estimate of ¥ k offset the expected reduction in the bias of ¢2. It can
also be seen in Table 3 that the relative standard errors of the parameter
estimates responded as they did in the log transformations.

At this point, the deficiencies cited earlier in using (12) as an estimate
of Yk prompts us to try an iterative approach in an attempt to improve the
estimates of o and y used in the linear regression equation. Since computer
costs increase quickly with successive non-linear regressions, at first only
one iteration was used to assess the effect. The change in the estimate of
population variance and the parameter estimates was very slight after one

iteration. Thus, there was also very little difference in the'} values.

The stability of o and ; leads one to suspect the validity of the o, values.

t
From (12), it can be seen that &t/é = 1 when 9 is approximately .73. This

means that y values are increased when §<.73 and decreased when §>.73.
Therefore, if (12) was the proper estimate for V/ k , the variance of y values

to the left of ; = .73 would be increased while the variance to the right
would be decreased so that the variance over the en“irez range would be
constant. Since (12) didn't adjust enough, this inc ‘cates that the proper

expression for ¥ k should have a steeper slope.
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Regression
MSE

R2

Param Est's

a

g /a
a

~

a*/p
p

Correlation

R
P

Prob >|R

R
S

Prob >|R_|
S

*Note: Model run on a data set which excluded one of the original samples.

Unadj

.0337
.9420

1.0360

1.5
4.2556

5.3
.8886

.2780
.0001
.3093

.0001

TABLE 3

MODELS

Y/(al+b1§)

.0337
.9365

1.0479

1.7
4.1228

3.8

.8925

.0840
.0002
L1375
.0001
.425251

1]
—
n

o
—
n

.791535

Unadj*

.0315
.9453

.0338

1.5
.5903

5.3
.8858

.3349
.0001
.3409

.0001

ar

Y/(52+b2y)*

.0309
.9417

1.0510

1.7

4.3878

3.0
.8915

.0482
.0333
.0754

.0009

.189735
1.106668



The plot of the data in Figure 1 shows several relatively high obser-
vations in the first three groups which don't seem to correspond to the
curve being fitted. A check was made on all the observations which
appear to be considerably disjoint from the main body of the data. The
observations denoted by "F" in the first group, "G" in group two and "G"
in the third group all turned out to be from the same sample. The rest
of the observations which were checked all came from different samples.
A close examination of the sample in question revealed no discernible
errors in recording or keypunching. However, the field observations
relating to the time variable were highly questionable. Since this sam-

ple exerts considerable influence on Tys particularly in the first two
groups of data, it was deleted.

A non-linear regression using the unadjusted model was run on the resultant
data set. Table 3 shows that the MSE and estimate of o decreased somewhat
which was to be expected. The correlation coefficients show a slight in-
crease in the positive direction.

In order to run a weighted regression on the altered data set, estimates for
O must be recalculated. Table 4 shows the standard deviation of the y

values in each time interval. A Tinear regression

TABLE 4

Time Interval 5 No. of

(days) (grgms) __Obs.
0<t<5 .0702 204
5<t<14 .1296 382
14<t<20 1751 409
20<t <28 .1864 414
28<t<33 .2226 319
33<t<41 .2197 180
41<t .2593 42
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of o, ony weighted by the number of observations associated with each

value of g4 Was run. The regression was again highly significant with an
improved R? value of .948. Figure 14 shows the data along with the esti-
mated regression line. The estimated equation is now

~

(13) o, = 033664 + .196353y

Looking back at (11), it can be seen that the slope of (13) has increased.
Taken at face value, (13) should adjust for more of the heteroscedasticity.
However, the change in data sets also increased the heteroscedasticity as

was evidenced by the correlation coefficients in Table 3. To get an esti-

mate for v k , (13) needs to be divided by the square root of the population
variance. The estimate of this is v/MSE producing the following relationship.

(14) ét/é = .189735 + 1.106668y
As in (12), 8t/8 = 1 when ; is approximately .73. So, an increase in slope

has occurred while the "fulcrum" remained the same. At this point, NLIN was

run on (10)using (14) as an estimate of V k . Figure 15 shows the estimated
non-linear equation overlayed on the transformed data. Figure 16 shows the
corresponding residual plot which, visually, does not seem to depict any
correlation with time. However, the correlation coefficients in Table 3
indicate a significant positive relationship. While not entirely successful

it can be seen that the weighted regression using y is adjusting for nearly
all the heteroscedasticity.

Table 3 also shows that the MSE of .0309 is slightly Tess than the corres-
ponding unadjusted MSE of .0315. While this probably evidences a reduction

in the bias of o2, there is most likely an offsetting affect, as discussed
earlier, because of the error in estimating the components used in obtaining
(14). The estimate of o is approximately 1.7% higher than in the comparable
unadjusted model.
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So far, the weighted regression has utilized a relationship between the
variance and the estimated values of y obtained from an unweighted re-
gression. There also exists a strong relationship between the variance

and the time variable. A linear regression of gy On t was performed and

a weighted regression was run using the resultant linear equation as an

estimate of vV k . Results were similar to those obtained by using (12)
in that a large share of the heteroscedasticity was adjusted for but
correlations remained significantly different from zero. An additional
problem which occurred when weighting by time was that the residuals

retained a very strong correlation with y. In the unadjusted model,
heteroscedasticity is evidenced not only by the relationship between
residuals and time but also by the correlation between residuals and the
estimated y values. The residual plots using time were very similar to

those using } in all the log models and the weighted regression with y

and, for that reason, the residuals versus y were not shown in the Figures.
Since the weighted regression using the time variable retained a strong

correlation between the residuals and 9, it will not be presented in this
report.

An Application To Forecasting

The main purpose of the growth model is to provide a forecast of dry head
weight at maturity. The earlier a reliable forecast can be made, the
better. Some of the previously discussed methods of adjusting for hetero-
scedasticity are more suited to a forecasting mode than others. Among the
log transformations, (7) is the preferred model to use. It's only require-
ment is knowledge of the range of the data. An interval of 0 to 2 grams
was used to find values for A; and B, but a simple computer program can be
written to solve for A, and B, using the minimum and maximum dry head
weight so that it isn't necessary to examine the data prior to using the
log adjustment. If (7) doesn't adjust for all the heteroscedasticity, a
double log transformation can be applied using the same logic that was em-
ployed to obtain (9). (8) would not be particularly useful in a forecast-
ing mode since it requires some idea of the value of a. The weighted least
squares regression approach is fully applicable to forecasting and we will
refer to this as the YHAT adjustment.
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The data set used in this example is the one used earlier in which a
questionable sample was deleted. This data set and one containing only
the first four weeks of data will be used to demonstrate how the dry
head weight is forecasted. The fourth week of data corresponds to the
first week of June, 1977. Harvest was not complete until early July
and actual harvest data was available somewhat later so, with four
weeks of data, we are forecasting at least one month ahead. The unad-
justed model and the YHAT, log and double log adjustments were run with
four weeks and all the data. The results are summarized in Table 5.

The &'s are consistently higher (about 9%) in all cases with four weeks
of data. While this could result from a change in growing conditions

during the latter part of the season, most likely the higher a's are due

to a shortage of data points where the growth curve begins to go asymp-
totic. This is the penalty of estimating o with most of the data con-
centrated on the lower half of the curve. The relative standard errors

do indicate that the parameter estimates are fairly stable. Remember

that an expanded data set was used throughout this report which inflates

the degrees of freedom and reduces the magnitude of the relative standard
error. Therefore, the relative standard errors in Table 5 imply more
stability than really exists. When we are mainly interested in forecasting,
the data set would not be expanded.

As was pointed out earlier, adjustment for heteroscedasticity increases
the relative standard error of a. This makes the relative standard error
a questionable criteria for selection of the preferred model in a partic-
ular situation. The relative standard error can be used as an indication
of stability as the growing season progresses and more data becomes avail-
able but, beyond trat, its importance should not be overemphasized.

The correlation coefficients then become the primary criteria to use in
establishing a model preference. With four weeks of data, the double log
adjustment is the only one that causes a nonsignificant correlation between
the absolute value of the residuals and time. When all the data is in-
cluded, the double log overadjusts and the YHAT adjustment becomes the
preferred model. The YHAT adjustment has a significant correlation at the
5% level but not at the 1% level.
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Regression
MSE

R2

Param Est's

a

~

oa/a

o~/
ole

Correlation

R
P

Prob >|R
rob >R |

R

Prob >|RS|

4 weeks

.0212
L9411

.1339
4.3

.5117
4.6

.9049

AY70
.0001
.4307
.0001

Unadj

A1l

.0315
.9453

.0338

1.5

.5903

5.3

.8858

. 3349
.0001
. 3409
.0001

TABLE 5
YHAT

4 weeks

.0215
.9374

.1413
5.2

.5141
5.0

.9058

.1250
.0001
.1745
.0001

A1l

.0309
.9417

.0510

1.7

.3878

3.0

.8915

.0428
.0333
.0754
.0009

4 weeks

.0194
.9625

.1220
5.0
.4937
4.8

.9063

.2372
.0001
.2578
.0001

Log

A1l

.0301
A4

.02N

1.7

.4008

3.3

L8911

1239
.0001
.1337
.0001

Double Log
4 weeks

.0160
9772

J191 1

5.9

.5384 4.

5.9
.9075

.0198 -
.5238
.0623 -

.0448

All

.0213
.9868

.0287

2.1
3736
2.6

.8951

1195
.0001
.0806
.0004




The R? values are high in all cases and the MSE's aren't directly com-
parable for reasons previously mentioned. On the basis of the corre-
lation significances, the double Tog model is preferred when fitting
four weeks of data while the YHAT adjustment provides the best results
with the complete data set.

Conclusions

In the application of the two methods to the growth data used in this
report, one comparison needs to be made. The estimate of o from (9) was
1.0280 while the weighted regression on the comparable data set (i.e.

(12)) provided & = 1.0479, a difference of nearly 2%. The log estimate

was less than the unadjusted & and the weighted estimate was greater.
However, it should also be recognized that the o from (9) is well within
a 95% confidence interval on the o from (12) and vice versa. This makes
it safe to say that the two adjusted &’s are not significantly different
at the 5% level. The 2% difference in &'s with the complete data set is
similar when only four weeks of data is used.

The Tog transformation and weighted regression have demonstrated the ability
to adjust for at least the largest share of the heteroscedasticity. It
should be stressed that the success of these two methods depends to a large
extent on the particular set of data being analyzed. However, the general
methods employed should be of help in analyzing other data sets.
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